Essential role of protein kinase G and decreased cytoplasmic Ca levels in NO-induced inhibition of rat aortic smooth muscle cell motility
نویسندگان
چکیده
Zhuang, Daming, Alice-Corina Ceacareanu, Bogdan Ceacareanu, and Aviv Hassid. Essential role of protein kinase G and decreased cytoplasmic Ca levels in NO-induced inhibition of rat aortic smooth muscle cell motility. Am J Physiol Heart Circ Physiol 288: H1859–H1866, 2005. First published December 2, 2004; doi: 10.1152/ajpheart.01031.2004.—Hyperinsulinemia is a major risk factor for the development of vascular disease. We have reported that insulin increases the motility of vascular smooth muscle cells via a hydrogen peroxide-mediated mechanism and that nitric oxide (NO) attenuates insulin-induced motility via a cGMP-mediated mechanism. Events downstream of cGMP elevation have not yet been investigated. The aim of our study was to test the hypothesis that antimotogenic effects of NO and cGMP in cultured rat aortic smooth muscle cells are mediated via PKG, followed by reduction of cytoplasmic Ca levels and increased protein tyrosine phosphatase-proline, glutamate, serine, and threonine activity, leading to suppression of agonist-induced elevation of hydrogen peroxide levels and cell motility. Treatment of primary cultures with adenovirus expressing PKG-1 mimicked NO-induced inhibition of insulin-elicited hydrogen peroxide elevation and cell motility, whereas treatment with the pharmacological PKG inhibitor Rp-8-bromo-3 ,5 -cyclic monophosphorothioate (Rp-8-Br-cGMPS) rescued the stimulatory effects of insulin that were suppressed by NO donor. Treatment of cells with insulin failed to increase cytoplasmic Ca levels, whereas NO donor decreased cytoplasmic Ca levels in the presence or absence of insulin. Treatment of cells with the Ca chelator BAPTA mimicked the effects of PKG and the NO donor and increased the activity of PTP-PEST. Finally, treatment with a dominant negative allele of PTP-PEST reversed the inhibitory effect of BAPTA on cell motility and hydrogen peroxide elevation. We conclude that NO-induced inhibition of cell motility occurs via PKG-mediated reduction of basal cytoplasmic Ca levels, followed by increased PTP-PEST activity, leading to decreased hydrogen peroxide levels and reduced cell motility.
منابع مشابه
Essential role of protein kinase G and decreased cytoplasmic Ca2+ levels in NO-induced inhibition of rat aortic smooth muscle cell motility.
Hyperinsulinemia is a major risk factor for the development of vascular disease. We have reported that insulin increases the motility of vascular smooth muscle cells via a hydrogen peroxide-mediated mechanism and that nitric oxide (NO) attenuates insulin-induced motility via a cGMP-mediated mechanism. Events downstream of cGMP elevation have not yet been investigated. The aim of our study was t...
متن کاملThe effect of adrenomedullin and proadrenomedullin N- terminal 20 peptide on angiotensin II induced vascular smooth muscle cell proliferation
Objective(s): The study aimed to investigate the effects of adrenomedullin (ADM) and proadrenomedullin N- terminal 20 peptide (PAMP) on angiotensin II (AngII)-stimulated proliferation in vascular smooth muscle cells (VSMCs). Materials and Methods: Thoracic aorta was obtained from Wistar rats and VSMCs were isolated from aorta tissues and then cultured. In vitro cultured VSMCs were stimulated w...
متن کاملNitric oxide attenuates IGF-I-induced aortic smooth muscle cell motility by decreasing Rac1 activity: essential role of PTP-PEST and p130 Alice-Corina Ceacareanu,
Ceacareanu, Alice-Corina, Bogdan Ceacareanu, Daming Zhuang, Yingzi Chang, Ramesh M. Ray, Leena Desai, Kenneth E. Chapman, Christopher M. Waters, and Aviv Hassid. Nitric oxide attenuates IGF-I-induced aortic smooth muscle cell motility by decreasing Rac1 activity: essential role of PTP-PEST and p130. Am J Physiol Cell Physiol 290: C1263–C1270, 2006. First published December 14, 2005; doi:10.1152...
متن کاملNitric oxide-induced motility in aortic smooth muscle cells: role of protein tyrosine phosphatase SHP-2 and GTP-binding protein Rho.
We have previously reported that SHP-2 upregulation is necessary for NO-stimulated motility in differentiated rat aortic smooth muscle cells. We now test the hypothesis that upregulation of SHP-2 is necessary and sufficient to stimulate cell motility. Overexpression of SHP-2 via recombinant adenoviral vector stimulated motility to the same extent as NO, whereas the expression of C463S-SHP-2, th...
متن کاملNO decreases phosphorylation of focal adhesion proteins via reduction of Ca in rat aortic smooth muscle cells.
Our laboratory has previously reported that the antimitogenic effect of nitric oxide (NO) in primary cultures of rat aortic smooth muscle cells may be attributed to activation of protein tyrosine phosphatase and dephosphorylation of protein phosphotyrosine [G. S. Dhaunsi, C. Matthews, K. Kaur, and A. Hassid. Am. J. Physiol. 272 ( Heart Circ. Physiol. 41): H1342-H1349, 1997]. The goal of the cur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005